Add like
Add dislike
Add to saved papers

Alkali-etching growth of nest-like Ag@mTiO2 hierarchical nanostructures and their potential applications.

Porous nanomaterials have attracted extensive interests in adsorption, catalysis, biosensors, and biomedicine due to their high surface area, well-defined pore structure and tunable pore size. However, how to obtain porous nanomaterials of desirable component and unique structure with multifunctionalities and synergetic properties is still a great challenge. In this work, a novel nest-like Ag@mTiO2 hierarchical nanostructure with Ag nanoparticle as the core and a mesoporous crystalline TiO2 as the protective shell was successfully prepared by layer-by-layer assembly technique and alkali-etching hydrothermal route. By simply changing the conditions of alkali etching, different nanostructures could be obtained, such as core-shell or rattle type. In the process, the thickness of coating silica layer and TiO2 shell both played important roles for the formation of desired nanostructures. The as-prepared products had a large specific surface area of 301m(2)/g and a tailored TiO2 outer shell. Raman spectra results showed perfect SERS signal of the tags enhanced and remained good stability even after one month. Doxycycline (Doxy) was chosen to evaluate their drug loading and controlled release properties. The results indicated that the obtained Ag@mTiO2 nanoparticles exhibited good biocompatibility and excellent drug-loading capacity. Consequently, they are also expected to serve as ideal candidates for more potential applications including photocatalysis, drug controlled release, biosensor and cell imaging, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app