Add like
Add dislike
Add to saved papers

Nonspherical liquid droplet falling in air.

The dynamics of an initially nonspherical liquid droplet falling in air under the action of gravity is investigated via three-dimensional numerical simulations of the Navier-Stokes and continuity equations in the inertial regime. The surface tension is considered to be high enough so that a droplet does not undergo breakup. Vertically symmetric oscillations which decay with time are observed for low inertia. The amplitude of these oscillations increases for high Gallilei numbers and the shape asymmetry in the vertical direction becomes prominent. The reason for this asymmetry has been attributed to the higher aerodynamic inertia. Moreover, even for large inertia, no path deviations or oscillations are observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app