Add like
Add dislike
Add to saved papers

Two-component dark-bright solitons in three-dimensional atomic Bose-Einstein condensates.

In the present work, we revisit two-component Bose-Einstein condensates in their fully three-dimensional (3D) form. Motivated by earlier studies of dark-bright solitons in the 1D case, we explore the stability of these structures in their fully 3D form in two variants. In one the dark soliton is planar and trapping a planar bright (disk) soliton. In the other case, a dark spherical shell soliton creates an effective potential in which a bright spherical shell of atoms is trapped in the second component. We identify these solutions as numerically exact states (up to a prescribed accuracy) and perform a Bogolyubov-de Gennes linearization analysis that illustrates that both structures can be dynamically stable in suitable intervals of sufficiently low chemical potentials. We corroborate this finding theoretically by analyzing the stability via degenerate perturbation theory near the linear limit of the system. When the solitary waves are found to be unstable, we explore their dynamical evolution via direct numerical simulations which, in turn, reveal wave forms that are more robust. Finally, using the SO(2) symmetry of the model, we produce multi-dark-bright planar or shell solitons involved in pairwise oscillatory motion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app