Add like
Add dislike
Add to saved papers

Robustness of spatial patterns in buffered reaction-diffusion systems and its reciprocity with phase plasticity.

The robustness of spatial patterns against perturbations is an indispensable property of developmental processes for organisms, which need to adapt to changing environments. Although specific mechanisms for this robustness have been extensively investigated, little is known about a general mechanism for achieving robustness in reaction-diffusion systems. Here, we propose a buffered reaction-diffusion system, in which active states of chemicals mediated by buffer molecules contribute to reactions, and demonstrate that robustness of the pattern wavelength is achieved by the dynamics of the buffer molecule. This robustness is analytically explained as a result of the scaling properties of the buffered system, which also lead to a reciprocal relationship between the wavelength's robustness and the plasticity of the spatial phase upon external perturbations. Finally, we explore the relevance of this reciprocity to biological systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app