Add like
Add dislike
Add to saved papers

Dynamics of wet granular hexagons.

The collective behavior of vibrated hexagonal disks confined in a monolayer is investigated experimentally. Due to the broken circular symmetry, hexagons prefer to rotate upon sufficiently strong driving. Due to the formation of liquid bridges, short-ranged cohesive interactions are introduced upon wetting. Consequently, a nonequilibrium stationary state with the rotating disks self-organized in a hexagonal structure arises. The bond length of the hexagonal structure is slightly smaller than the circumdiameter of a hexagon, indicating geometric frustration. This investigation provides an example where the collective behavior of granular matter is tuned by the shape of individual particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app