Add like
Add dislike
Add to saved papers

Generalized Edwards thermodynamics and marginal stability in a driven system with dry and viscous friction.

We consider a spring-block model with both dry and viscous frictions, subjected to a periodic driving allowing mechanically stable configurations to be sampled. We show that under strong driving, the scaling of the correlation length with the energy density is incompatible with the prediction of the Edwards statistical approach, which assumes a uniform sampling of mechanically stable configurations. A crossover between the Edwards scaling and nonstandard high-energy scaling is observed at energy scales that depend on the viscous friction coefficient. Generalizing Edwards thermodynamics, we propose a statistical framework, based on a sampling of marginally stable states, that is able to describe the scaling of the correlation length in the highly viscous regime.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app