Add like
Add dislike
Add to saved papers

Traffic gridlock on a honeycomb city.

Inspired by an old and almost in oblivion urban plan, we report the behavior of the Biham-Middleton-Levine (BML) model-a paradigm for studying phase transitions of traffic flow-on a hypothetical city with a perfect honeycomb street network. In contrast with the original BML model on a square lattice, the same model on a honeycomb does not show any anisotropy or intermediate states, but a single continuous phase transition between free and totally congested flow, a transition that can be completely characterized by the tools of classical percolation. Although the transition occurs at a lower density than for the conventional BML, simple modifications, like randomly stopping the cars with a very small probability or increasing the traffic light periods, drives the model to perform better on honeycomb lattices. As traffic lights and disordered perturbations are inherent in real traffic, these results question the actual role of the square gridlike designs and suggest the honeycomb topology as an interesting alternative for urban planning in real cities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app