Add like
Add dislike
Add to saved papers

Averaged model for probabilistic coalescence avalanches in two-dimensional emulsions: Insights into uncertainty propagation.

A two-dimensional concentrated emulsion exhibits spontaneous rapid destabilization through an avalanche of coalescence events which propagate through the assembly stochastically. We propose a deterministic model to explain the average dynamics of the avalanching process. The dynamics of the avalanche phenomenon is studied as a function of a composite parameter, the decay time ratio, which characterizes the ratio of the propensity of coalescence to cease propagation to that of propagation. When this ratio is small, the avalanche grows autocatalytically to destabilize the emulsion. Using a scaling analysis, we unravel the relation between a local characteristic of the system and a global system wide effect. The anisotropic nature of local coalescence results in a system size dependent transition from nonautocatalytic to autocatalytic behavior. By incorporating uncertainty into the parameters in the model, several possible realizations of the coalescence avalanche are generated. The results are compared with the Monte Carlo simulations to derive insights into how the uncertainty propagates in the system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app