Add like
Add dislike
Add to saved papers

Multifunctional nanoparticles self-assembled from polyethylenimine-based graft polymers as efficient anticancer drug delivery.

Multiple functionalization of nanoparticles has attracted great interest in drug delivery. In this paper, polymeric amphiphiles of polyethylenimine (PEI) conjugated with methoxy poly(ethylene glycol) aldehyde (mPEG-CHO), poly(ε caprolactone) aldehyde (PCL-CHO) and pyrene-1-carboxaldehyde (Py-CHO) were synthesized via Schiff's reaction. The conjugates self-assembled into nanoparticles with pH-sensitivity to load anticancer drug doxorubicin (DOX), further coated with hyaluronic acid (HA) for tumor targeting. The mean size of nanoparticles was about 100nm and the stability of the nanoparticles was well in aqueous solution. The nanoparticles coated with HA showed faster disassembly in acidic solution, resulting in faster drug release in the medium with pH 5.0 compared to uncoated nanoparticles. Moreover, the nanoparticles exhibited an endosomal escape function to accelerate the release of DOX in cancer cells, which led to low IC50 s to kill breast cancer cells (4T1) and liver cancer cells (HepG2) in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app