Add like
Add dislike
Add to saved papers

Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents.

We synthesized two mixed-ligand Cu(II) complexes containing different aroylhydrazone ligands and a pyridine co-ligand, namely, [Cu(L1)(Py)] (C1) and [Cu(L2)(Py)(Br)] (C2) (L1 = (E)-2-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide, Py = pyridine, L2 = (E)-2-hydroxy-N'-(phenyl(pyridin-2-yl)methylene)benzohydrazide), and assessed their chemical and biological properties to understand their marked activity. C2 showed better anticancer activity than C1 in various human cancer cell lines, including the cisplatin-resistant lung cancer cell line A549cisR. Both Cu(II) complexes, especially C2, displayed promising anti-metastatic activity against HepG2 cells. Spectroscopic titration and agarose gel electrophoresis experiments indicated that C2 exhibited binding affinity toward calf-thymus DNA and efficient pBR322 DNA-cleaving ability. Further mechanistic studies showed that C2 effectively induced DNA damage and thus led to cell cycle arrest at the G2/M phase, and also stimulated mitochondrial dysfunction mediated by reactive oxygen species and caspase-dependent apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app