Add like
Add dislike
Add to saved papers

Calibration of on-chip cell electroporation by a pseudo-volumetric uptake model.

Micron 2017 August
Most conventional methods for assessing uptake of exogenous molecules and nanomaterials into cells use the projected two-dimensional (2D) area of uptake intensity into individual cells. However, since most cells have a three-dimensional (3D) spherical shape, volumetric uptake cannot be quantified accurately using 2D area analysis. Here, we present a method for calibrating the electroporative uptake intensity of small molecules by using a novel predictable spherical volume (PSV) model, which is more accurate and quantitative than previous methods. As a proof-of-concept, we visualized the electroporative uptake of propidium iodide (PI) into mammalian cells in a single rectangular polydimethylsiloxane (PDMS) microfluidic channel, often used for direct observation of on-chip cell electroporation. Our PSV method yielded more accurate results than conventional methods and faithfully reflected volumetric changes in uptake intensity, even those due to microflow. We believe that this approach can be potentially beneficial for screening the electroporative uptake efficiency of cell-membrane impermeable nanodrugs, such as functional nanoparticles incorporated with a small drug capable of slowly diffusing inside cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app