Add like
Add dislike
Add to saved papers

Achieving global perfect homeostasis through transporter regulation.

Nutrient homeostasis-the maintenance of relatively constant internal nutrient concentrations in fluctuating external environments-is essential to the survival of most organisms. Transcriptional regulation of plasma membrane transporters by internal nutrient concentrations is typically assumed to be the main mechanism by which homeostasis is achieved. While this mechanism is homeostatic we show that it does not achieve global perfect homeostasis-a condition where internal nutrient concentrations are completely independent of external nutrient concentrations for all external nutrient concentrations. We show that the criterion for global perfect homeostasis is that transporter levels must be inversely proportional to net nutrient flux into the cell and that downregulation of active transporters (activity-dependent regulation) is a simple and biologically plausible mechanism that meets this criterion. Activity-dependent transporter regulation creates a trade-off between robustness and efficiency, i.e., the system's ability to withstand perturbation in external nutrients and the transporter production rate needed to maintain homeostasis. Additionally, we show that a system that utilizes both activity-dependent transporter downregulation and regulation of transporter synthesis by internal nutrient levels can create a system that mitigates the shortcomings of each of the individual mechanisms. This analysis highlights the utility of activity-dependent regulation in achieving homeostasis and calls for a re-examination of the mechanisms of regulation of other homeostatic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app