Add like
Add dislike
Add to saved papers

Progesterone Decreases in vitro Indoleamine 2, 3-dioxygenase Expression in Dendritic and CD4 + Cells from Maternal-Fetal Interface of Rats.

PROBLEM: Several mechanisms contribute to the tolerogenic state observed during pregnancy, such as the activity of the enzyme indoleamine 2, 3-dioxygenase (IDO). This initializes the catabolism of tryptophan, inducing T cells to apoptosis due to its deprivation and by the action of its catabolites in the placental microenvironment. Progesterone plays an important part on immunological tolerance mechanisms during pregnancy; however, there is no evidence it is related to IDO activity. Thus, this study aimed to investigate progesterone influence on the maternal-fetal interface of pregnant Wistar rats, by identifying IDO positive cells by immunophenotyping and flow cytometry under exogenous progesterone supplementation.

METHOD OF STUDY: Placenta and embryo cells were cultured and separated into groups that received interferon γ or progesterone, supplemented or not with mifepristone. After 2 and 24 h, these were labeled with an anti-IDO and a series of antibodies specific to leucocytes and progesterone receptor and processed through flow cytometry analysis.

RESULTS: Progesterone induced a significant decrease in the expression of IDO in dendritic cells and CD4+ lymphocytes.

CONCLUSION: The blocking of progesterone receptor on these cells by mifepristone restored IDO expression levels and may constitute evidence of the participation of this hormone through a direct route in these cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app