Add like
Add dislike
Add to saved papers

Experimental study of temporal-spatial binary pattern projection for 3D shape acquisition.

Applied Optics 2017 April 11
Three-dimensional (3D) acquisition of an object with modest accuracy and speed is of particular concern in practice. The performance of digital sinusoidal fringe pattern projection using an off-the-shelf digital video projector is generally discounted by the nonlinearity and low switch rate. In this paper, a binary encoding method to encode one computer-generated standard sinusoidal fringe pattern is presented for circumventing such deficiencies. In previous work [Opt. Eng.54, 054108 (2015)OPEGAR0091-328610.1117/1.OE.54.5.054108], we have developed a 3D system based on this encoding tactic and showed its prospective application. Here, we first build a physical model to explain the mechanism of how to generate good sinusoidality. The phase accuracy with respect to the conventional spatial binary encoding method and sinusoidal fringe pattern is also comparatively evaluated through simulation and experiments. We also adopt two phase-height mapping relationships to experimentally compare the measurement accuracy among them. The results indicate that the proposed binary encoding strategy has a comparable performance to that of sinusoidal fringe pattern projection and enjoys advantages over the spatial binary method under the same conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app