Add like
Add dislike
Add to saved papers

An orthogonal single-molecule experiment reveals multiple-attempt dynamics of type IA topoisomerases.

Topoisomerases are enzymes that are involved in maintaining the topological state of cellular DNA. Their dynamic characteristics remain poorly understood despite numerous structural, biophysical and biochemical studies. Recent single-molecule experiments revealed that an important feature of the type IA topoisomerase mechanism is the presence of pauses between relaxation events. However, these experiments could not determine whether the protein remains DNA bound during the pauses or what relationship may exist between protein domain movements and topological changes in the DNA. By combining two orthogonal single-molecule techniques, we found that E. coli topoisomerase I constantly changes conformation when attempting to modify the topology of DNA, but succeeds in only a fraction of the attempts. Thus, its mechanism can be described as a series of DNA strand-passage attempts that culminate in a successful relaxation event.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app