JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Organic Phosphorescence Nanowire Lasers.

Organic solid-state lasers (OSSLs) based on singlet fluorescence have merited intensive study as an important class of light sources. Although the use of triplet phosphors has led to 100% internal quantum efficiency in organic light-emitting diodes (OLEDs), stumbling blocks in triplet lasing include generally forbidden intersystem crossing (ISC) and a low quantum yield of phosphorescence (ΦP ). Here, we reported the first triplet-phosphorescence OSSL from a nanowire microcavity of a sulfide-substituted difluoroboron compound. As compared with the unsubstituted parent compound, the lone pair of electrons of sulfur substitution plus the intramolecular charge transfer interaction introduced by the nitro moiety lead to an highly efficient T1 (π,π*) ← S1 (n,π*) ISC (ΦISC = 100%) and a moderate ΦP (10%). This, plus the optical feedback provided by nanowire Fabry-Perot microcavity, enables triplet-phosphorescence OSSL emission at 650 nm under pulsed excitation. Our results open the door for a whole new class of laser materials based on previously untapped triplet phosphors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app