Add like
Add dislike
Add to saved papers

Antimicrobial susceptibility of Bacteroides fragilis group organisms in Hong Kong by the tentative EUCAST disc diffusion method.

Anaerobe 2017 October
This study used a recently developed EUCAST disc diffusion method to measure the susceptibility of 741 B. fragilis group isolates to six antibiotics. Isolates nonsusceptible to imipenem and metronidazole by the disc method were further investigated by E-test. Species identification was obtained by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR assays and 16S rRNA sequencing. The most common species were B. fragilis (n = 424, including 81 division II and 343 division I isolates), B. thetaiotaomicron (n = 111), B. ovatus (n = 53) and B. vulgatus (n = 46). Overall, metronidazole following by imipenem and amoxicillin-clavulanate are the most active agents with over 90% of all the isolates being susceptible at the tentative disc breakpoints. Susceptibility rates for moxifloxacin (69.5%), piperacillin-tazobactam (58.2%) and clindamycin (37.2%) were much lower. Metronidazole is the only agent active against >90% of B. fragilis, non-fragilis Bacteroides and Parabacteroides isolates. With the exception of B. fragilis division II, imipenem was active against 88.0%-98.3% of isolates of the other species. Susceptibility rates for clindamycin (14.4%-54.3%) and moxifloxacin (33.3%-80.6%) were low across all species and many isolates had no inhibition zone around the discs. E-test testing confirmed 8.2% (61/741) and 1.6% (12/741) isolates as nonsusceptible to imipenem and metronidazole, respectively with B. fragilis and B. thetaoiotaomicron accounting for a large share of the observed resistance to both agents. Two imipenem-resistant and one metronidazole-resistant B. dorei were misidentified as B. vulgatus by MALDI-TOF MS. These data highlights the importance anaerobic susceptibility testing in clinical laboratories to guide therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app