Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Decrease in the Generation of Amyloid-β Due to Salvianolic Acid B by Modulating BACE1 Activity.

OBJECTIVE: Generation and accumulation of the amyloid-β (Aβ) peptide after proteolytic processing of the full length amyloid precursor protein (FL-APP) by β-secretase (β-site APP cleaving enzyme or BACE1) and γ-secretase are the main causal factors of Alzheimer's disease (AD). Thus, inhibition of BACE1, a rate-limiting enzyme in the production of Aβ, is an attractive therapeutic approach for the treatment of AD. Recent studies suggest that salvianolic acid B (Sal B) is isolated from the radix of Salvia miltiorrhiza Bunge, a Chinese herbal medicine commonly used for the treatment of cardiovascular, cerebrovascular and liver diseases in China.

METHOD: In this study, we discovered that Sal B acted as a BACE1 modulator and reduced the level of secreted Aβ in two different Swedish APP (SwedAPP) mutant cell lines. Using N2a-mouse and H4- human neuroglioma cell lines expressing SwedAPP, it was demonstrated that Sal B significantly and dose-dependently decreased the generation of extracellular Aβ, soluble APPβ (by-product of APP cleaved by BACE1), and intracellular C-terminal fragment β from APP without influencing α-secretase and γ-secretase activity and the levels of FL-APP. In addition, using protein-docking, we determined the potential conformation of Sal B on BACE1 docking and revealed the interactions of Sal B with the BACE1 catalytic center.

RESULTS: The docking provides a feasible explanation for the experimental results, especially in terms of the molecular basis of Sal B's action. Our results indicate that Sal B is a BACE1 inhibitor and, as such, is a promising candidate for the treatment of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app