Add like
Add dislike
Add to saved papers

Secondary Structural Changes of Intact and Disulfide Bridges-Cleaved Human Serum Albumins in Thermal Denaturation up to 130°C - Additive Effects of Sodium Dodecyl Sulfate on the Changes.

The secondary structural changes of human serum albumin with the intact 17 disulfide bridges (HSA) and the disulfide bridges-cleaved human serum albumin (RCM-HSA) in thermal denaturation were examined. Most of the helical structures of HSA, whose original helicity was 66%, were sharply disrupted between 50 and 100°C. However, 14% helicity remained even at 130°C. The temperature dependence of the degree of disrupted helical structures of HSA was discussed in connection with questions about a general protein denaturation model. When HSA lost the disulfide bridges, about two-thirds of the original helices were disrupted. Although the helices of RCM-HSA remaining after the cleavage of the disulfide bridges were relatively resistant against the heat treatment, the helicity changed from 22% at 25°C to 14% at 130℃. The helicity of RCM-HSA at 130°C agreed with the helicity of HSA at the same temperature, indicating that the same helical moieties of the polypeptides remained unaffected at this high temperature. The additive effects of sodium dodecyl sulfate (SDS) on the structural changes of HSA and RCM-HSA in thermal denaturation were also examined. A slight amount of SDS protected the helical structures of HSA from thermal denaturation below 80°C. Upon cooling to 25°C after heat treatment at temperatures below 70°C with the coexistence of SDS of low concentrations, the helical structures of HSA were reformed to the original level at 25°C before heating. A similar tendency was also observed after heat treatment at 80°C. In contrast, the helical structures of the RCM-HSA complexes with SDS are completely recovered upon cooling to 25°C even after heat treatment up to 100°C. Similar investigations were also carried out on bovine serum albumins which had the intact 17 disulfide bridges and lost all of the bridges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app