Add like
Add dislike
Add to saved papers

Parkinsonism and dystonia are differentially induced by modulation of different territories in the basal ganglia.

Neuroscience 2017 June 15
Numerous clinical and experimental observations suggest that deficient neuronal signaling in the globus pallidus externa (GPe) is integral to both Parkinson's disease (PD) and dystonia. In our previous studies in jaundiced dystonic rats, widespread silencing of neurons in GP (rodent equivalent to GPe) preceded and persisted during dystonic motor activity. We therefore hypothesized that on a background of slow and highly irregular and bursty neuronal activity in GP, cortical motor drive produces profound inhibition of GP as the basis for action-induced dystonia in Gunn rats. Presently, the neurotoxin ibotenate was injected locally into the motor territory of GP at one to four sites, over one to two tracts, in 19 normal rats. We found that highly circumscribed dorsal motor territory lesions reproducibly induced parkinsonism, while ventral lesions consistently produced dystonia. Post-lesioning, slow neuronal burst oscillations in the entopeduncular nucleus distinguished parkinsonian from dystonic rats. Next, we compared the deep brain stimulation contact sites in the GP internus used to treat patients with PD (n=21 implants in 12 successive patients) versus dystonia (n=16 implants in nine patients) and found the efficacious territory for ameliorating PD to be located chiefly dorsal to that for dystonia. The comparative distribution for treating PD versus dystonia was therefore anatomically consistent with that for inducing these features via GP lesions in rodents. Our collective findings thus suggest that dystonia and parkinsonism are differentially produced by pathological silencing of GPe neurons along distinct motor sub-circuits, resulting in disparate pathological basal ganglia output signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app