Add like
Add dislike
Add to saved papers

Upregulation of MiR-369-3p suppresses cell migration and proliferation by targeting SOX4 in Hirschsprung's disease.

BACKGROUND: Hirschsprung disease (HSCR) is a congenital digestive disease in the new born. miR-369-3p has been reported to be involved in many human diseases. However, the relationship between miR-369-3p and HSCR remains largely unknown.

METHODS: In this study, qRT-PCR was used to detect the relative expression of miR-369-3p in 60 HSCR bowel tissue samples and 47 matched controls. Bioinformatic analysis and dual-luciferase reporter assay were performed to evaluate the target for miR-369-3p. Cell Counting Kit-8 (CCK-8) assay, Transwell assay, wound healing assay and flow cytometry were employed to investigate the biological function of miR-369-3p in human SH-SY5Y and 293T cell lines.

RESULTS: We found that ganglion cell numbers were remarkably reduced while miR-369-3p was significantly upregulated in HSCR tissues compared to that in adjacent normal tissues (P<0.01). Dual-luciferase reporter assay showed that the 3'-UTR of SOX4 was a direct target to miR-369-3p. Moreover, an increased level of miR-369-3p was inversely correlated with decreased levels of SOX4 mRNA and protein (P<0.05, respectively). Dysregulation of miR-369-3p and SOX4 significantly suppressed cell proliferation and migration in SH-SY5Y and 293T cell lines in vitro (P<0.05, respectively).

CONCLUSION: Our study demonstrates that aberrant expression of miR-369-3p might play a crucial role in the development HSCR by regulating SOX4 expression, which may infer that it is an effective diagnostic target in the pathogenesis of HSCR, but investigation is still needed to explore the underlying mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app