Add like
Add dislike
Add to saved papers

Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere.

Talanta 2017 July 2
As biomarkers of many diseases, glycoproteins are of great significance to clinical diagnostics. However, the determination of low abundant glycoproteins in complex biological samples without any pretreatment process is still a problem. In this study, a rapid and convenient separation method for highly efficient enrichment of glycoproteins is reported, based on pH double-responsive imprinted magnetic microspheres. Thin imprinted polymer shells were fabricated onto the surface of magnetic microspheres by free radical polymerization, using 2-(Dimethylamino) ethyl methacrylate as pH-sensitive monomer, 4-vinylphenylbronic acid as boronate affinity monomer, and ovalbumin (OVA) as template molecule. Combining the advantages of pH-sensitive monomer and boronate affinity monomer, rapidly capture-release of OVA could be modulated by changing solution pH. Moreover, high absorption ability (81.2mg/g) was achieved within about 10min. This study provided responsible way to imprint glycoproteins and showed great potential for glycoprotein detection in clinical diagnostic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app