Add like
Add dislike
Add to saved papers

Nano-Armoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes.

The formulation in which therapeutic proteins are administered plays a key role in retaining their biological activity. Enzyme wrapping, using synthetic polymers, is a strategy employed to provide enzymes with lower immunogenicity, longer circulation times, and better targeting capabilities. Protein-polymer complexation methods, involving covalent, noncovalent, and electrostatic interactions, that can provide means to develop formulations for retaining enzyme stability are discussed in this chapter. Amphiphilic self-cross-linkable polymer was used to encapsulate capsase-3 enzyme in the nanogel, while inverse emulsion polymerization method was used to entrap α-glucosidase enzyme in the nanogel. These nanogels were characterized by dynamic light scattering, transmission electron microscopy, and gel electrophoresis. Upon release of caspase-3 enzyme from polymeric nanogel, it retained nearly 86% of its original activity. Similarly, α-glucosidase that was encased in the acid cleavable polymeric nanogel exhibited substantial activity after release under acidic conditions (pH 5, 48h). Nano-armoring of the enzymes were nearly complete and provided high yields of the encased enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app