Add like
Add dislike
Add to saved papers

Modelling oxide formation and growth on platinum.

We present a mathematical model of oxide formation and growth on platinum. The motivation stems from the necessity to understand platinum dissolution in the cathode catalyst layer of polymer electrolyte fuel cells. As is known, platinum oxide formation and reduction are strongly linked to platinum dissolution processes. However, a consistent model of the oxidation processes on platinum does not exist. Our oxide growth model links interfacial exchange processes between platinum and oxygen ions with the transport of oxygen ion vacancies via diffusion and migration. A parametric analysis is performed to rationalize vital trends in oxide growth kinetics. The rate determining step of oxide formation and growth is identified as the extraction of platinum atoms at the metal-oxide interface. A kinetic effect is observed while adjusting the potential when growing the oxide layer, and the solution indicates that a structural change occurs at high potentials, around 1.5 VRHE . The model compares well to experimental data for various materials from various sources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app