Add like
Add dislike
Add to saved papers

Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices.

Using a recently introduced formulation of the ground-state inverse design problem for a targeted lattice [W. Piñeros et al., J. Chem. Phys. 144, 084502 (2016)], we discover purely repulsive and isotropic pair interactions that stabilize low-density truncated square and truncated hexagonal crystals, as well as promote their assembly in Monte Carlo simulations upon isochoric cooling from a high-temperature fluid phase. The results illustrate that the primary challenge to stabilizing very open two-dimensional lattices is to design interactions that can favor the target structure over competing stripe microphases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app