Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

High levels of local inter- and intra-host genetic variation of West Nile virus and evidence of fine-scale evolutionary pressures.

West Nile virus (WNV; Flaviviridae, Flavivirus) has been endemic in New York State (NYS) since its 1999 introduction, yet prevalence in Culex mosquitoes varies substantially over small spatial and temporal scales. It is unclear if viral genetics plays a role in this variability, as genetic and phenotypic characterization on local scales has generally been lacking. In addition, intrahost diversity of circulating strains have not been fully characterized despite the documented role of minority variants in viral fitness and virulence. In an effort to characterize WNV variability within epidemiologically relevant scales, we performed phylogenetic analyses on NYS isolates from 1999 to 2012. In addition, we performed full-genome, deep-sequencing and genetic analyses on 15 WNV strains isolated in 2012 from Cx. pipiens in an endemic focus of Suffolk County, NY. Our results indicate continued evolution and seasonal maintenance in NYS, yet also widespread mixing and high levels of genetic diversity within geographic foci and individual seasons. Well supported local clusters with shared amino acid differences were identified and suggest local evolutionary pressures and the potential for phenotypic variability. Intrahost diversity of focal isolates was also high, with polymorphism at levels >1.0% identified in approximately 10% of the WNV genome. Although most minority mutations were unique, mutational hotspots shared among local isolates were identified, particularly in C, NS1 and NS2A genes. The most polymorphic region, positions 3198-3388 of the NS1 gene, was comprised predominately of non-synonymous mutations, suggesting a selective advantage for amino acid diversity in this region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app