Add like
Add dislike
Add to saved papers

Novel 6MV X-ray photoneutron detection and dosimetry of medical accelerators.

PURPOSE: Dosimetry of fast, epithermal and thermal photoneutrons in 6MV X-ray beams of two medical accelerators were studied by novel dosimetry methods.

METHODS: A Siemens ONCOR and an Elekta COMPACT medical accelerators were used. Fast, epithermal and thermal photoneutron dose equivalents in 10cm×10cm 6MV X-rays fields were determined in air and on surface of a polyethylene phantom in X and Y directions. Polycarbonate dosimeters as bare or with enriched (10)B convertors (with or without cadmium covers) were used applying a 50Hz-HV electrochemical etching method.

RESULTS: Fast, epithermal and thermal photoneutron dose equivalents were efficiently determined respectively as ∼1145.8, ∼45.3 and ∼170.6μSv in air and ∼1888.5, ∼96.1 and ∼640.6μSv on phantom per 100Gy X-rays at the isocenter of Siemens ONCOR accelerator in air. The dose equivalent is maximum at the isocenter which decreases as distance from it increases reaching a constant level. Tissue-to-air ratios are constants up to 15cm from the isocenter. No photoneutrons was detected in the Elekta COMPACT accelerator.

CONCLUSIONS: Fast, epithermal and thermal photoneutron dosimetry of 6MV X-rays were made by novel dosimetry methods in a Siemens ONCOR accelerator with sum dose equivalent per Gy of ∼0.0014% μSv with ∼0.21MeV mean energy at the isocenter; i.e. ∼150 times smaller than that of 18MV X-rays. This observation assures clinical safety of 6MV X-rays in particular in single-mode machines like Elekta COMPACT producing no photoneutrons due to no "beryllium exit window" in the head structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app