Add like
Add dislike
Add to saved papers

Altered glucose metabolism and hypoxic response in alloxan-induced diabetic atherosclerosis in rabbits.

Diabetes mellitus accelerates atherosclerosis that causes most cardiovascular events. Several metabolic pathways are considered to contribute to the development of atherosclerosis, but comprehensive metabolic alterations to atherosclerotic arterial cells remain unknown. The present study investigated metabolic changes and their relationship to vascular histopathological changes in the atherosclerotic arteries of rabbits with alloxan-induced diabetes. Diabetic atherosclerosis was induced in rabbit ilio-femoral arteries by injecting alloxan (100 mg/kg), injuring the arteries using a balloon, and feeding with a 0.5% cholesterol diet. We histologically assessed the atherosclerotic lesion development, cellular content, pimonidazole positive-hypoxic area, the nuclear localization of hypoxia-inducible factor-1α, and apoptosis. We evaluated comprehensive arterial metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using 18F-fluorodeoxyglucose and pimonidazole. Plaque burden, macrophage content, and hypoxic areas were more prevalent in arteries with diabetic, than non-diabetic atherosclerosis. Metabolomic analyses highlighted 12 metabolites that were significantly altered between diabetic and non-diabetic atherosclerosis. A half of them were associated with glycolysis metabolites, and their levels were decreased in diabetic atherosclerosis. The uptake of glucose evaluated as 18F-fluorodeoxyglucose in atherosclerotic lesions increased according to increased macrophage content or hypoxic areas in non-diabetic, but not diabetic rabbits. Despite profound hypoxic areas, the nuclear localization of hypoxia-inducible factor-1α decreased and the number of apoptotic cells increased in diabetic atherosclerotic lesions. Altered glycolysis metabolism and an impaired response to hypoxia in atherosclerotic lesions under conditions of insulin-dependent diabetes might be involved in the development of diabetic atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app