Add like
Add dislike
Add to saved papers

Parafermionic Wires at the Interface of Chiral Topological States.

We explore a scenario where local interactions form one-dimensional gapped interfaces between a pair of distinct chiral two-dimensional topological states-referred to as phases 1 and 2-such that each gapped region terminates at a domain wall separating the chiral gapless edge states of these phases. We show that this type of T junction supports pointlike fractionalized excitations obeying parafermion statistics, thus implying that the one-dimensional gapped interface forms an effective topological parafermionic wire possessing a nontrivial ground state degeneracy. The physical properties of the anyon condensate that gives rise to the gapped interface are investigated. Remarkably, this condensate causes the gapped interface to behave as a type of anyon "Andreev reflector" in the bulk, whereby anyons from one phase, upon hitting the interface, can be transformed into a combination of reflected anyons and outgoing anyons from the other phase. Thus, we conclude that while different topological orders can be connected via gapped interfaces, the interfaces are themselves topological.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app