Add like
Add dislike
Add to saved papers

Enhancing Lifetime and Efficiency of Organic Solar Cell by Applying an In Situ Synthesized Low-Crystalline ZnO Layer.

ChemSusChem 2017 June 10
By introducing an in situ synthesized low-crystalline ZnO (LC-ZnO) (amorphous) layer between the cathode and the active layer of PCPDTBT:CdSe solar cell {PCPDTBT: poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b:3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]}, the device keeps more than 80 and 40 % of its initial lifetime after 180 and 360 days without any encapsulation, respectively. In this regard, 180 days is the highest lifetime achieved for polymer-based solar cells with direct configuration. In addition, the power conversion efficiency (PCE) is improved up to 70 % in the presence of the LC-ZnO interfacial layer. The LC-ZnO layer is synthesized during polymer annealing after solution-deposition of the precursor at a low temperature (140 °C) and a short time. Highly crystalline ZnO (HC-ZnO) nanoparticles are also synthesized and applied as an interfacial layer. The results show that the LC-ZnO is superior to the HC-ZnO in acting as cathode interfacial layer and moisture scavenger because of the high coverage and surface area provided by the in situ synthesis method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app