JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols.

Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2-18 h) or the use of UV light (10-30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and can be accelerated with UV light irradiation, reducing the reaction time to 1-2 min. This grafting procedure leads to densely packed organic monolayers that are hydrolytically stable (even up to 30 days at pH 3 or 11) and can display excellent antifouling behavior against a range of organic polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app