JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson's disease.

A progressive loss of dopamine neurons in the substantia nigra (SN) is considered the main feature of idiopathic Parkinson's disease (PD). Recent neuropathological evidence however suggests that the axons of the nigrostriatal dopaminergic system are the earliest target of α-synuclein accumulation in PD, thus the principal site for vulnerability. Whether this applies to in vivo PD, and also to the mesolimbic system has not been investigated yet. We used [11 C]FeCIT PET to measure presynaptic dopamine transporter (DAT) activity in both nigrostriatal and mesolimbic systems, in 36 early PD patients (mean disease duration in months ± SD 21.8 ± 10.7) and 14 healthy controls similar for age. We also performed anatomically-driven partial correlation analysis to evaluate possible changes in the connectivity within both the dopamine networks at an early clinical phase. In the nigrostriatal system, we found a severe DAT reduction in the afferents to the dorsal putamen (DPU) (η2  = 0.84), whereas the SN was the less affected region (η2  = 0.31). DAT activity in the ventral tegmental area (VTA) and the ventral striatum (VST) were also reduced in the patient group, but to a lesser degree (VST η2  = 0.71 and VTA η2  = 0.31). In the PD patients compared to the controls, there was a marked decrease in dopamine network connectivity between SN and DPU nodes, supporting the significant derangement in the nigrostriatal pathway. These results suggest that neurodegeneration in the dopamine pathways is initially more prominent in the afferent axons and more severe in the nigrostriatal system. Considering PD as a disconnection syndrome starting from the axons, it would justify neuroprotective interventions even if patients have already manifested clinical symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app