Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Embryo culture in presence of oviductal fluid induces DNA methylation changes in bovine blastocysts.

Reproduction 2017 July
During the transit through the oviduct, the early embryo initiates an extensive DNA methylation reprogramming of its genome. Given that these epigenetic modifications are susceptible to environmental factors, components present in the oviductal milieu could affect the DNA methylation marks of the developing embryo. The aim of this study was to examine if culture of bovine embryos with oviductal fluid (OF) can induce DNA methylation changes at specific genomic regions in the resulting blastocysts. In vitro produced zygotes were cultured in medium with 3 mg/mL bovine serum albumin (BSA) or 1.25% OF added at the one- to 16-cell stage (OF1-16), one- to 8-cell stage (OF1-8) or 8- to 16-cell stage (OF8-16), and then were cultured until Day 8 in medium with 3 mg/mL BSA. Genomic regions in four developmentally important genes ( MTERF2 , ABCA7 , OLFM1 , GMDS ) and within LINE-1 retrotransposons were selected for methylation analysis by bisulfite sequencing on Day 7-8 blastocysts. Blastocysts derived from OF1-16 group showed lower CpG methylation levels in MTERF2 and ABCA7 compared with the BSA group. However, CpG sites within MTERF2 , ABCA7 and OLFM1 showed higher methylation levels in groups OF1-8 and OF8-16 than in OF1-16. For LINE-1 elements, higher CpG methylation levels were observed in blastocysts from the OF1-16 group than in the other experimental groups. In correlation with the methylation changes observed, mRNA expression level of MTERF2 was increased, while LINE-1 showed a decreased expression in blastocysts from OF1-16 group. Our results suggest that embryos show transient sensitivity to OF at early stages, which is reflected by specific methylation changes at the blastocyst stage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app