JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Uric Acid Is Associated With Inflammatory Biomarkers and Induces Inflammation Via Activating the NF-κB Signaling Pathway in HepG2 Cells.

OBJECTIVE: Serum uric acid (UA) has been associated with increased risk of cardiovascular and metabolic diseases. However, the causal mechanisms linking elevated UA levels to cardio-metabolic diseases are still unsettled. One potential explanation for how UA might contribute to cardio-metabolic disease might be its ability to induce systemic inflammation.

APPROACH AND RESULTS: Herein, we report a positive relationship between serum UA and acute-phase reactants, such as high-sensitivity C-reactive protein, fibrinogen, ferritin, complement C3, and erythrocyte sedimentation rate, in a cohort of 2731 nondiabetic adults. The relationship remains significant after adjustment for several confounders, including age, sex, adiposity, anti-hypertensive treatments or diuretics use. To confirm the existence of a causal relationship, we examined the effect of UA on the expression of inflammatory biomarkers in human hepatoma HepG2 cells and characterized the signaling pathway by which UA acts. We show that UA stimulates the expression of C-reactive protein, fibrinogen, ferritin, and complement C3 in a dose-dependent fashion. The proinflammatory effects of UA were abrogated by benzbromarone, a specific inhibitor of UA transporters. Exposure of cells to UA resulted in activation of the IκB kinase/IκBα/NF-κB signaling pathway that was attenuated by benzbromarone. The effect of UA was completely blocked by the antioxidant N -acetylcysteine.

CONCLUSIONS: These in vivo and in vitro data suggest that hyperuricemia might induce the expression of hepatic inflammatory molecules by activating the proinflammatory NF-κB signaling cascade. Because inflammation has an important pathogenetic role in metabolic and cardiovascular disease, our study may help understanding the mechanism by which hyperuricemia may contribute to organ damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app