JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization and spatiotemporal expression of gonadotropin-releasing hormone in the Pacific abalone, Haliotis discus hannai.

Gonadotropin-releasing hormone (GnRH) is a key neuropeptide regulating reproduction in humans and other vertebrates. Recently, GnRH-like cDNAs and peptides were reported in marine mollusks, implying that GnRH-mediated reproduction is an ancient neuroendocrine system that arose prior to the divergence of protostomes and deuterostomes. Here, we evaluated the reproductive control system mediated by GnRH in the Pacific abalone Haliotis discus hannai. We cloned a prepro-GnRH cDNA (Hdh-GnRH) from the pleural-pedal ganglion (PPG) in H. discus hannai, and analyzed its spatiotemporal gene expression pattern. The open reading frame of Hdh-GnRH encodes a protein of 101 amino acids, consisting of a signal peptide, a GnRH dodecapeptide, a cleavage site, and a GnRH-associated peptide. This structure and sequence are highly similar to GnRH-like peptides reported for mollusks and other invertebrates. Quantitative polymerase chain reaction demonstrated that Hdh-GnRH mRNA was more strongly expressed in the ganglions (PPG and cerebral ganglion [CG]) than in other tissues (gonads, gills, intestine, hemocytes, muscle, and mantle) in both sexes. In females, the expression levels of Hdh-GnRH mRNA in the PPG and branchial ganglion (BG) were significantly higher at the ripe and partial spent stages than at the early and late active stages. In males, Hdh-GnRH mRNA levels in the BG showed a significant increase in the partial spent stage. Unexpectedly, Hdh-GnRH levels in the CG were not significantly different among the examined stages in both sexes. These results suggest that Hdh-GnRH mRNA expression profiles in the BG and possibly the PPG are tightly correlated with abalone reproductive activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app