Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis.

Molecular Therapy 2017 June 8
The vascular response to pro-atherosclerotic factors is a multifactorial process involving endothelial cells (ECs), macrophages (MACs), and smooth muscle cells (SMCs), although the mechanism by which these cell types communicate with each other in response to environmental cues is yet to be understood. Here, we show that miR-155, which is significantly expressed and secreted in Krüppel-like factor 5 (KLF5)-overexpressing vascular smooth muscle cells (VSMCs), is a potent regulator of endothelium barrier function through regulating endothelial targeting tight junction protein expression. VSMCs-derived exosomes mediate the transfer of KLF5-induced miR-155 from SMCs to ECs, which, in turn, destroys tight junctions and the integrity of endothelial barriers, leading to an increased endothelial permeability and enhanced atherosclerotic progression. Moreover, overexpression of miR-155 in ECs inhibits endothelial cell proliferation/migration and re-endothelialization in vitro and in vivo and thus increases vascular endothelial permeability. Blockage of the exosome-mediated transfer of miR-155 between these two cells may serve as a therapeutic target for atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app