Add like
Add dislike
Add to saved papers

Pro-inflammatory gene expression in adipose tissue of patients with atherosclerosis.

Physiological Research 2017 September 23
Inflammatory changes, both in the arterial wall and adipose tissue, play a crucial role in the development of atherosclerosis. We measured the gene expression of tumor necrosis factor-alpha (TNFalpha), monocyte chemoattractant protein-1 (MCP-1), and interleukin 6 (IL-6) in adipose tissue (AT) of living kidney donors (LKD) and patients with peripheral arterial disease (PAD). Quantitative polymerase chain reaction (qPCR) and flow cytometry analyses were performed in subcutaneous (SAT), visceral (VAT), and perivascular adipose tissue (PVAT). Data of PAD patients showed significantly higher expression in VAT in all three genes (TNFalpha 5-fold, p<0.05; MCP-1 3.6-fold, p<0.05; IL-6 18.8-fold, p<0.001). The differences in PVAT and SAT were less significant. Total body pro-inflammatory status was documented by higher TNFalpha concentration in patients (4.86+/-1.4 pg/ml) compared to LKDs (2.14+/-0.9 pg/ml; p<0.001), as was hsCRP (11.8+/-7.0 in PAD; 1.5+/-0.48 in LKDs; p=0.017). We found no age-dependent relationship between gene expression vs. TNFalpha and hsCRP concentrations in both compared groups. No effect of the atherosclerosis score on gene expression and circulating inflammatory markers within the PAD group was observed. Our results suggest that the AT of PAD patients infiltrated with macrophages produces more cytokines involved in the development of inflammation and atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app