Add like
Add dislike
Add to saved papers

Synthon Approach to Structure Models for the Bayerite-Derived Layered Double Hydroxides of Li and Al.

The Br- ion intercalated layered double hydroxide (LDH) of Li and Al obtained from the bayerite-Al(OH)3 precursor crystallizes in a structure different from that of the gibbsite-Al(OH)3 derived counterpart. Additionally, it undergoes temperature- and humidity-induced reversible interpolytype transformations. The dehydrated LDH (T ≈ 120 °C) adopts a structure of hexagonal symmetry (space group P3̅1m) and comprises a stacking of the metal hydroxide layers arranged one above another. On cooling and rehydration, the LDH adopts a structure of monoclinic symmetry with a stepwise increase in the stacking angle, β. Using the structural synthon approach, based on the systematic elimination of the principal symmetry elements of the hexagonal crystal, structure models were generated for each of the two hydration steps (relative humidity ∼50%, >70%) and the structures refined (space group C2/m). The refined structures show that the interpolytype transitions are a result of rigid translations of successive metal hydroxide layers relative to one another by translation vectors (1/6, 0, 1) and (1/3, 0, 1), respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app