Add like
Add dislike
Add to saved papers

Biogenic Nanoselenium Particles Effectively Attenuate Oxidative Stress-Induced Intestinal Epithelial Barrier Injury by Activating the Nrf2 Antioxidant Pathway.

In the present study, a new form of selenium nanoparticle (biogenic nanoselenium (BNS) particles) was synthesized using bacteria. The protection of BNS particles against oxidative stress-induced intestinal barrier dysfunction and the inherent mechanisms of this process were investigated, and selenomethionine (SeMet) and chemically synthesized nanoselenium (Nano-Se) particles were used for comparison. Characterization of BNS particles revealed that they were monodispersed and homogeneous spheres, with an average size of 139.43 ± 7.44 nm. In the mouse model of intestinal oxidative stress, BNS particles were found to protect the mouse intestinal barrier function and preserve intestinal redox homeostasis more efficiently than SeMet and Nano-Se. In vitro experiments with porcine jejunum epithelial (IPEC-J2) cells verified the stronger epithelial barrier-protecting effect of BNS particles against oxidative stress, with reduced cell apoptosis and an improved cell redox state. BNS activated the nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and increased the expression of its downstream genes, including thioredoxin reductase (TXNRD)-1, NADPH dehydrogenase (NQO)-1, heme oxygenase (HO)-1, and thioredoxin (Trx), in dose- and time-dependent manners. In contrast, SeMet and Nano-Se merely enhanced the activity of the selenoenzymes TXNRD-1 and glutathione peroxidase (GPx)-1, indicating the role of selenium donors. Moreover, the knock down of Nrf2 significantly blocked the antioxidative effect of BNS, confirming that BNS protects the intestinal barrier from oxidative stress-induced damage by activating Nrf2 and its downstream genes. Our results suggest that BNS is a promising selenium species with potential application in treating oxidative stress-related intestinal diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app