JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Glucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation.

Glucagon-like peptide 1 (GLP-1) is object of intensive investigation for not only its metabolic effects but also the protective vascular actions. Since platelets exert a primary role in the pathogenesis of atherosclerosis, inflammation and vascular complications, we investigated whether GLP-1 directly influences platelet reactivity. For this purpose, in platelets from 72 healthy volunteers we evaluated GLP-1 receptor (GLP-1R) expression and the effects of a 15-minute incubation with the native form GLP-1(7-36), the N-terminally truncated form GLP-1(9-36) and the GLP-1 analogue Liraglutide (100 nmol/l) on: i) aggregation induced by collagen or arachidonic acid (AA); ii) platelet function under shear stress; iii) cGMP and cAMP synthesis and cGMP-dependent protein kinase (PKG)-induced Vasodilator-Stimulated-Phosphoprotein (VASP) phosphorylation; iv) activation of the signalling molecules Phosphatidylinositol 3-Kinase (PI3-K)/Akt and Mitogen Activated Protein Kinase (MAPK)/ERK-1/2; and v) oxidative stress. Experiments were repeated in the presence of the nitric oxide donor Na-nitroprusside. We found that platelets constitutively express GLP-1R and that, independently of GLP-1R, GLP-1(7-36), GLP-1(9-36) and Liraglutide exert platelet inhibitory effects as shown by: a) increased NO-antiaggregating effects, b) increased the activation of the cGMP/PKG/VASP pathway, c) reduced the activation of PI3-K/Akt and MAPK/ERK-2 pathways, d) reduced the AA-induced oxidative stress. When the experiments were repeated in the presence of the antagonist of GLP-1R Exendin(9-39), the platelet inhibitory effects were maintained, thus indicating a mechanism independent of GLP-1R. In conclusion, GLP-1(7-36), its degradation product GLP-1(9-36) and Liraglutide exert similar inhibitory effects on platelet activation, suggesting a potential protective effect on the cardiovascular system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app