Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Carbon-bearing silicate melt at deep mantle conditions.

Scientific Reports 2017 April 13
Knowledge about the incorporation and role of carbon in silicate magmas is crucial for our understanding of the deep mantle processes. CO2 bearing silicate melting and its relevance in the upper mantle regime have been extensively explored. Here we report first-principles molecular dynamics simulations of MgSiO3 melt containing carbon in three distinct oxidation states - CO2 , CO, and C at conditions relevant for the whole mantle. Our results show that at low pressures up to 15 GPa, the carbon dioxide speciation is dominated by molecular form and carbonate ions. At higher pressures, the dominant species are silicon-polyhedral bound carbonates, tetrahedral coordination, and polymerized di-carbonates. Our results also indicate that CO2 component remains soluble in the melt at high pressures and the solution is nearly ideal. However, the elemental carbon and CO components show clustering of carbon atoms in the melt at high pressures, hinting towards possible exsolution of carbon from silicate melt at reduced oxygen contents. Although carbon lowers the melt density, the effect is modest at high pressures. Hence, it is likely that silicate melt above and below the mantle transition zone, and atop the core-mantle boundary could efficiently sequester significant amounts of carbon without being gravitationally unstable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app