Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

When less means more: dehydration improves innate immunity in rattlesnakes.

Immune function can vary based on availability of resources, and most studies of such influences have focused on the co-investment of energy into immune and other physiological functions. When energy resources are limited, trade-offs exist, which can compromise immunity for other functions. As with energy, water limitation can also alter various physiological processes, yet water has received little consideration for its possible role in modulating immune functions. We examined the relationship between immunocompetence and hydration state using the western diamond-backed rattlesnake ( Crotalus atrox ). This species is known to undergo substantial seasonal fluctuations in water availability with extreme limitations during the hot-dry season. We collected blood samples from free-ranging C. atrox to compare osmolality and innate immune function (lysis, agglutination and bacterial growth inhibition) during the milder and relatively moister early spring season, the hot-dry season and the hot-wet season. To isolate effects of dehydration from other possible seasonal influences, we complemented this field study with a laboratory study in which we withheld food and water from individually housed adult C. atrox for up to 16 weeks. We collected blood samples from each snake as it dehydrated and collected a final sample after the snake was given water ad libitum at the end of the experiment. Our results demonstrate that C. atrox experience significant dehydration during the hot-dry season, and that, in general, innate immune function is highly correlated with osmolality, whether natural or artificially manipulated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app