Add like
Add dislike
Add to saved papers

Strategies for enhanced deammonification performance and reduced nitrous oxide emissions.

Deammonification's performance and associated nitrous oxide emissions (N2O) depend on operational conditions. While studies have investigated factors for high performances and low emissions separately, this study investigated optimizing deammonification performance while simultaneously reducing N2O emissions. Using a design of experiment (DoE) method, two models were developed for the prediction of the nitrogen removal rate and N2O emissions during single-stage deammonification considering three operational factors (i.e., pH value, feeding and aeration strategy). The emission factor varied between 0.7±0.5% and 4.1±1.2% at different DoE-conditions. The nitrogen removal rate was predicted to be maximized at settings of pH 7.46, intermittent feeding and aeration. Conversely, emissions were predicted to be minimized at the design edges at pH 7.80, single feeding, and continuous aeration. Results suggested a weak positive correlation between the nitrogen removal rate and N2O emissions, thus, a single optimizing operational set-point for maximized performance and minimized emissions did not exist.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app