Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Molecular Perovskite with Switchable Coordination Bonds for High-Temperature Multiaxial Ferroelectrics.

The underlying phase transitions of ferroelectric mechanisms in molecular crystals are mainly limited to order-disorder and displacive types that are not involved in breaking of the chemical bonds. Here, we show that the bond-switching transition under ambient pressure is designable in molecular crystals, and demonstrate how to utilize the weaker and switchable coordination bonds in a novel molecular perovskite, [(CH3 )3 NOH]2 [KFe(CN)6 ] (TMC-1), to afford a scarce multiaxial ferroelectrics with a high Curie temperature of 402 K and 24 equivalent ferroelectric directions (more than BaTiO3 ). The high-quality thin films of TMC-1 can be easily fabricated by a simple solution process, and to reveal perfect ferroelectric properties at both macroscopic and microscopic scales, suggesting TMC-1 as a promising candidate for applications in next-generation flexible electronics. The presented molecular assembly strategy, together with the achieved bond-switching ferroelectric mechanism, opens a new avenue for designing advanced ferroelectric materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app