JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions.

Scientific Reports 2017 April 13
Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10-5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app