Add like
Add dislike
Add to saved papers

Solid Contact Ion-Selective Electrodes for in Situ Measurements at High Pressure.

Analytical Chemistry 2017 April 20
Solid contact polymeric ion-selective electrodes (SC-ISEs) have been fabricated using microporous carbon (μPC) as the ion-to-electron transducer, loaded with a liquid membrane cocktail containing both ionophore and additive dissolved in plasticizer. These SC-ISEs were characterized and shown to be suitable for analysis in aqueous environments at pressures of 100 bar. Potassium ISEs, prepared in this manner, showed excellent performance at both atmospheric and elevated pressures, as evaluated by their response slopes and potential stability. These novel SC-ISEs were shown to be capable of measuring K(+) at pressures under which traditional liquid-filled ISEs fail. Furthermore, the effect of pressure on the response of these sensors had little or no effect on potential, sensitivity, or limit of detection. High pressure sensor calibrations were performed in standard solutions as well as simulated seawater samples to demonstrate their usefulness as sensors in a deep-sea environment. These novel SC-ISE sensors show promise of providing the ability to make in situ real-time measurements of ion-fluxes near deep-ocean geothermal vents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app