Add like
Add dislike
Add to saved papers

Establishment of novel therapy to reduce progression of myopia in rats with experimental myopia by fibroblast transplantation on sclera.

Myopia is one of the most common visual disorders, and is characterized by a progressive axial elongation of the eye. Several methods have been tried to reduce the progression of axial elongation and myopia, but there are still no well-accepted procedures. We hypothesized that transplantation of fibroblasts on the sclera would lead to the synthesis of collagen fibrils on the sclera and reinforce it, and reduce the degree of axial elongation of eyes with form deprivation myopia. To examine this, we developed a form deprivation myopia model in albino Wistar rats and examined the effects of human fibroblasts (hFbs) transplantation on the sclera in the progression of myopia and axial elongation. We found that the form deprivation by eyelid suture induced a myopic shift and axial elongation associated with a thinner sclera and smaller-diameter collagen fibrils in Wistar rats. We also found that the transplanted hFbs synthesized type 1 collagen fibrils on the rat sclera, and these eyes with form deprivation had significantly reduced ocular elongation and myopic shift than the eyes without hFbs transplantation. Some of the synthesized collagen fibrils migrated into the sclera and had a bundle-like appearance and a stripe-like pattern, indicating they had mature characteristics. These findings suggest that the rat sclera was reinforced by the newly synthesized collagen fibrils and the axial elongation was reduced. These results can provide important information for the development of a therapy targeting myopia in humans. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app