Add like
Add dislike
Add to saved papers

Dynamic Orthogonal Switching of a Thermoresponsive Self-Organized Helical Superstructure.

Controllable manipulation of self-organized dynamic superstructures of functional molecular materials by external stimuli is an enabling enterprise. Herein, we have developed a thermally driven, self-organized helical superstructure, i.e., thermoresponsive cholesteric liquid crystal (CLC), by integrating a judiciously chosen thermoresponsive chiral molecular switch into an achiral liquid crystalline medium. The CLC in lying state, in both planar and twisted nematic cells, exhibits reversible in-plane orthogonal switching of its helical axis in response to the combined effect of temperature and electric field. Consequently, the direction of the cholesteric grating has been observed to undergo 90° switching in a single cell, enabling non-mechanical beam steering along two orthogonal directions. The ability to reversibly switch the cholesteric gartings along perpendicular directions by appropriately adjusting temperature and electric field strength could facilitate their applications in 2D beam steering, spectrum scanning, optoelectronics and beyond.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app