Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Electrokinetic device design and constraints for use in high conductance solutions.

Electrophoresis 2017 June
The quest for new cell-free DNA and exosome biomarker-based molecular diagnostics require fast and efficient sample preparation techniques. Conventional methods for isolating these biomarkers from blood are both time-consuming and laborious. New electrokinetic microarray devices using dielectrophoresis (DEP) to isolate cell-free DNA and exosome biomarkers have now greatly improved the sample preparation process. Nevertheless, these devices still have some limitations when used with high conductance biological fluids, e.g. blood, plasma, and serum. This study demonstrates that electrochemical damage may occur on the platinum electrodes of DEP microarray devices. It further examines two model device designs that include a parallel wire arrangement and a planar array. Effective isolation of fluorescent beads with parallel wires is shown under low-conductance conditions (10(-4)  S/m), but electrothermal flow overcomes DEP forces under high conductance conditions (>0.1 S/m). Planar devices are shown to be effective under high conductance conditions (∼1 S/m) without the deleterious effects of electrothermal flow. This study provides new insights into design compromises and limitations for producing future electrokinetic devices for better performance with high conductance solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app