Add like
Add dislike
Add to saved papers

Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp.

3 Biotech 2017 May
Xylanases have important industrial applications but are most extensively utilized in the pulp and paper industry as a pre-bleaching agent. We characterized a xylanase from Bacillus amyloliquefaciens strain SK-3 and studied it for kraft pulp bleaching. The purified enzyme had a molecular weight of ~50 kDa with optimal activity at pH 9.0 and 50 °C. The enzyme showed good activity retention (85%) after 2 h incubation at 50 °C and pH 9.0. This enzyme obeyed Michaelis-Menten kinetics with regard to beechwood xylan with K m and V max values of 5.6 mg/ml, 433 μM/min/mg proteins, respectively. The enzyme activity was stimulated by Mn(2+), Ca(2+) and Fe(2+) metal ions. Further, it also showed good tolerance to phenolics (2 mM) in the presence of syringic acid (no loss), cinnamic acid (97%), benzoic acid (94%) and phenol (97%) activity retention. The thermostability of xylanase was increased by 6.5-fold in presence of sorbitol (0.75 M). Further, pulp treated with 20U/g of xylanase (20IU/g) alone and with sorbitol (0.75M) reduced kappa number by 18.3 and 23.8%, respectively after 3 h reaction. In summary, presence of xylanase shows good pulp-bleaching activity, good tolerance to phenolics, lignin and metal ions and is amenable to thermostability improvement by addition of polyols. The SEM image showed significant changes on the surface of xylanase-treated pulp fiber as a result of xylan hydrolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app